1

Errata

Chapter	Section	Page	Location within	Correction (Deleted
-		C	page	font for deleted text
				and <u>underlined</u> font
				for new text)
2	2.2.1	40	Line 7	Eccentricity of a
				circular orbit is <u>1-0</u>
2	2.2.1.1	49	Line 10	for an eccentricity of
				0.1-[degree deleted –
				eccentricity is
				dimensionless]
2	2.2.1.1	50	Figure 2.10(a)	Delete degree symbol
				from eccentricity.
2	Revision		Q 2.7	Plot a graph of rate of
				change of argument of
				perigee
3	3.2.1.1	92	Last but one	$Ie(\theta)$ =the wanted
			paragraph	ground station antenna
				gain towards interfering
				source, Pi =the satellite
				transmitter output of
				interfering carrier,
				Is(φ)=the interfering
				satellite's antenna gain
				towards wanted ground
				station interfering
				$\frac{1}{1}$ source. lp = the path
				loss of interfering
				carrier towards wanted
				ground station
3	3211	94	Applies to	See solution 3 chapter
5	5.2.1.1		interference	3 for further details and
			calculation	update
			algorithm	upuno
3	331	103	Figure 3.8 caption	Source: Figure 1 of
5	5.5.1	105	rigure 5.6 caption	ITU-R, 1992 1 -1992b
3	3.3.1	104	Figure 3.9 caption	Source: Figure 1 of
				ITU-R, 1992-1 -1992b
3	3.3.1	105	Para 3, line 10	A technique for
				laboratory simulation of
				tropospheric
				scintillation has also
				been reported by this
				author (Reference:
				Simulate tropospheric
				amplitude scintillation
				Richharia. M.: Pratt. T
				Microwaves & RF
				(ISSN 0745-2993), vol
				24. April 1985, p. 79-
				82.
3	3.3.1.1	109	Table 3.2. entrv	$\frac{1}{f^2}$ -replace by
			'Dispersion	$1/f^3$

2

Errata

			(ps/Hz)'	
3	3.3.1.1	109	Table 3.2, entry 'Scintillation''	$\frac{1/4^2}{1/f^3}$ by
3	3.3.1.1	109	4 th -5 th line below Table 3.2	and therefore MSS service links use circularly polarized waves,
3	3.3.3.1	111	Equation 3.10	$S_4^{\uparrow} = \sigma / \mu$ (Read as: S_4 = σ / μ
3	3.3.3.1	111	First line below equation 3.10	where σ denotes ensemble average standard deviation and μ is the mean signal power
3	3.3.3.1	111	Equation 3.11	$S_4 \alpha \underline{\propto} exp(-\beta/W)$
3	References	172	ITU (1992a), ITU- R Rec. 531-2, RPI Series, Geneva	A recent version of this recommendation is available: Rec.531-11, 2012
4	4.2.5	194	Equation 4.6	Equation should read as: $\frac{1}{N} \sum_{n=0}^{N-1} A_n e^{j\Phi} e^{j(n-1)} e^{j(n-1)}$ $n\Delta\omega_{)kT}$ [See position of Φ_n]
6	6.2.1.2	275	2 nd line from bottom of the page	high up link carrier to noise ratio density <u>in</u> <u>presence of non-</u> <u>linearity</u> (see Figure 6.3b, <u>as an example</u> where the ratio is>12).
6	6.2.3	299	Line before equation (6.2)	It can be readily shown that the edge-of- coverage carrier to noise <u>power density</u> ratio (C/N) at the spacecraft from a user transmission <u>via an</u> <u>omni-directional</u> <u>antenna</u> is given as (Egami, 1995)
6	6.2.3	299	Equation (6.2)	For derivation of equation (6.2), please see solutions to chapter 6, revision question 4 in Solutions to revision question of the book [Available on this web site].
7	7.4.2	339	6 th line below figure 7.11	Telemetry <u>Tracking</u> and Telecommand
8	8.2.1	359	Para 3, Line 3	global mobile <u>packet</u> radio

3

Errata

				services
			41-	(GMPRS)
9	9.4.1.3	447	6 th line from the	In such cases, theoretical
			bottom of page.	assumptions values have
				to be estimated based on
				heuristics, logic, etc.
9	9.7	464	6 th line from the	alternative methods
			bottom of page.	within their respective
				jurisdiction to encourage
				efficient use of spectrum
11	11.2.1	534	Last entry Table 11.9	Service link $- K_a$
13	13.3.3.1	634	Last but one line	a signal to travel
			from the bottom of	from the
			page	satellite to a receiver and
				velocity of
				electromagnetic wave in
				the intervening medium
14	14.4.3	665	First sentence of sub-	Clarification of text: The
			section	frequency planning
				process lays out carrier
				optimally such that radio
				link quality remains intact.
				The process does not
				include upper layer issues
				that degrade the quality of
				service to the end user.